首页> 外文OA文献 >ALLPAD: Approximate learning of logic programs with annotated disjunctions
【2h】

ALLPAD: Approximate learning of logic programs with annotated disjunctions

机译:aLLpaD:带有带注释的析取的逻辑程序的近似学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Logic Programs with Annotated Disjunctions (LPADs) provide a simple and elegant framework for representing probabilistic knowledge in logic programming. In this paper we consider the problem of learning ground LPADs starting from a set of interpretations annotated with their probability. We present the system ALLPAD for solving this problem. ALLPAD modifies the previous system LLPAD in order to tackle real world learning problems more effectively. This is achieved by looking for an approximate solution rather than a perfect one. A number of experiments have been performed on real and artificial data for evaluating ALLPAD, showing the feasibility of the approach.
机译:具有带注释的析取逻辑程序(LPAD)提供了一个简单而优雅的框架来表示逻辑编程中的概率知识。在本文中,我们考虑了从基础LPAD的学习开始的问题,这些解释以一组带有其概率的解释开始。我们提出了ALLPAD系统来解决这个问题。 ALLPAD修改了以前的系统LLPAD,以便更有效地解决现实世界中的学习问题。这是通过寻找一种近似的解决方案而不是完美的解决方案来实现的。已经对真实和人工数据进行了许多实验,以评估ALLPAD,表明了该方法的可行性。

著录项

  • 作者

    F. RIGUZZI;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号